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1. INTRODUCTION

The essential starting point in any finite element calculation is the choice
of the approximating subspace from the space of admissible functions. In
this there are two different approaches. The first is to choose a set of elements
and points and to construct a basis to interpolate function value at each of
these points or nodes, as we shall call them. This type of interpolation is
called Lagrange interpolation. If some of the function's derivatives are also
interpolated, we refer to this as Hermite interpolation. In the literature, the
term "element" is often used to refer to a particular geometrical shape
together with a set of basis functions. However, since many different sets
of basis functions can be used with the same geometrical shape, we shall
refer to the shape alone as the "element" and the basis functions as a basis
for a particular element. The choice of element shape will be dictated by the
geometry of the problem and the accuracy required in matching any
geometrical irregularities within the domain of interest. One would certainly
use the simplest shape possible, and in this respect the triangle has proved
very popular and has been the object of much attention in the past. Zhimal
[12] introduced cubic and quintic Hermite bases for the triangle in 1968,
and these and closely related bases have become extremely popular. One
reason for the popularity of Hermite bases is the direct connection between
parameters used in the method, i.e., function derivatives, and important
physical concepts of the problem, e.g., energy. Unique polynomials for a
wider range of Hermite interpolation (and for Lagrange interpolation) and
error estimates have been given more recently by Ciarlet and Raviart [2].
As methods developed it became desirable to be able to construct basis
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102 R. MCLEOD

functions for curved elements. The curved element was introduced into
structural analysis by Ergatoudis, Irons, and Zienkiewicz [3]. The technique
they employed is commonly referred to as the "isoparametric transformation"
technique. It is most commonly used in its Lagrange form where the trans
formation depends only on the basis functions and coordinates of the nodes.
In its Hermite form the transformation is of an implicit nature, certain
derivatives having to be specified before the transformation is completely
determined [7]. The·re are two aspects of the method, be it used in the
Lagrange or Hermite form, of particular relevance to the present discussion.
Firstly, the particular basis functions used to define the required transforma
tion also, by implication, give an approximation to any curved edges of the
element. That is, the processes of approximating the geometry of the given
domain and the choice of basis functions cannot be separated. McLeod
and Mitchell [6] have discussed this for certain isoparametric transformations.
Secondly, the method, by the way in which it is defined, is strictly only first
order in that the basis is only exact for linear polynomials. An interesting
study of this was given by Bond et al. [1], where it was shown that serious
loss of accuracy resulted when the elements were greatly distorted from their
corresponding straight-edged counterparts. These authors proposed a
different type of basis which was affected less by the element distortion than
the isoparametric one. This basis, however, lacked the conformity of an
isoparametric one. In the case of Lagrange interpolation alternatives which
allowed greater freedom in the approximation of curves and which were
conforming have been proposed [5, 8] and node requirements for any order
of approximation over any two-dimensional element bounded by algebraic
curves have been given [4]. In the present note we shall discuss the problem
of producing a conforming Hermite basis for (2n l)th degree approxi
mation. We restrict ourselves in this note to three-sided elements where each
side is an arc of a conic. The reader may find a little algebraic geometry
background helpful to his understanding of the arguments presented
here [9-II ].

2. THE DIMENSION OF THE BASIS

Since the (2n + 1)th degree polynomial in two variables has (2n + 3)(n + 1)
degrees of freedom we will require at least this number of basis functions.
For the straight-sided triangle this number will be sufficient and the sufficiency
can be seen in the following way. Conformity requires that each basis function
is identically zero on all sides not containing its node. To check that this
condition is satisfied on a particular side one only needs to check that the
basis function satisfying the homogeneous conditions on that side is iden-
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tically zero. Consider the (2n + 1)th degree polynomial interpolating to
function value and the partial derivatives up to order n at the vertices of a
t;-iangle. If this polynomial satisfies the homogeneous conditions at these
points then this is equivalent to the corresponding algebraic curve having a
point of multiplicity n + 1 at each vertex. This implies that the curve has
2n + 2 points in common with the line joining any two vertices and hence,
by Bezout's theorem, must have a common component. Since the line is
irreducible, the polynomial must be identically zero on the line. Thus inter
polation of function and partial derivatives up to order n is quite sufficient
to ensure conformity. This gives a total of j(n +- 2)(n + 1) basis functions
associated with nodes on the boundary of the element. Tnis is less than
(2n +- 3)(n + 1) and hence an additional (n(2)(/1 + 1) basis functions
associated with interior points and interpolating function value only are taken
so that the final basis can span polynomials up to degree 2n + 1. Using the
same argument when the sides of the element are conics, we see that additional
nodes must be placed on the sides of the element. In this case the corre
sponding algebraic curve to the interpolating polynomial of degree 2n + i
and the conic arc still have 2(n + 1) points in common, but this is now
insufficient to imply that they have a common component. However, if we
place an additional 2n + 1 nodes on the conic side and interpolate function
value at each of these points, then the curve of degree 2/1 + 1 will now have
4n + 3 points in common with the conic. Again by Bezout's theorem the
two curves must have a common component. Since the conic is assumed
irreducible, the polynmial of degree 2n + 1 must be identically zero on the
conic. Conformity will then be assured. We will also take an additional
(n(2)(n + 1) interior points similar to the straight-sided triangle and inter
polate function value at these points. The total dimension of the basis will
then be

(2n + 3)(n + 1) + 1(2n + 1),

where I is the number of conic arcs.

3. A BASIS FOR THE STRAIGHT-SIDED TRIANGLE

(l)

As outlined in the previous section, a basis of dimension (2n + 3)(n + 1)
can satisfy the condition of conformity and span all polynomials of degree
less than or equal to 2n + 1. Polynomial bases satisfying these conditions are
well known and are easily obtained by demanding that the general polynomial
of degree 2n + 1 satisfy the appropriate interpolation conditions. It is
convenient for our purpose to write such a basis in the following form.
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Let the set {He/x, y)}(ex = 1,2,... , (n/2)(n + 1)) be the set of basis functions
which satisfy the homogeneous conditions at the vertices, i.e.,

oi+JH",(x,y) I = °
oxi oyJ V

k
'

and

i,j = 0, 1, ... , n, i + j :::;; n, where Vk , k = 1,2,3,
are the vertex nodes, (2)

ex, (3 = 1,2,..., (n/2)(n + 1), Oij = 0, i oF j, Oii = 1,

where (x"" y",) are the coordinates of the node associated with H",(x, y).
These nodes will be chosen in the interior of the element.

Let the remaining basis functions be labeled {T"'J3Y(x, y)} and satisfy

for ex, (3, i,j = 0, 1,2,... , n, (3)
i + j, ex + (3 :::;; n, k, y = 1, 2, 3,

nd

n°= 1,2,... , 2" (n + 1),

(i.e., T"'J3Y(x, y) is zero at all the interior nodes). For example, T2I3(X, y) is
zero at all the interior nodes, is zero and has zero partial derivatives up to
and including order n at vertex nodes VI and V2 , and is zero with zero
derivatives except iJ3 T213(x, y)/iJx2 iJy at vertex node V3 • At thIs node

iJ3T2I3(X, y)/ox2 oy = 1.

The complete basis is then given by the (2n + 3)(n + 1) functions
{H",(x, y), T"'J3Y{x, y)}. We must note here that for uniqueness of the basis
the interior nodes must be such that no three of them lie on a line, no six
lie on a conic and in general no subset of i(m + 2)(m + 1) of them can lie
on a curve of degree m.

4. THE FORM OF THE BASIS FOR THE CURVED ELEMENT

Notation. We will introduce basis functions which will be labeled
WV"'J3Y{x, y), WI/x, y), and WCi(x, y). These basis functions will be functions
of the independent space variables x and y. However, for ease in writing,
we will usually write these as WV"'J3Y' WIi , and WCi , the dependence being
understood. We will also do this with the aforementioned functions T"'J3ix, y)
and Hi(x, y). We will also omit the subscript when unnecessary. Occasionally,
however, it is necessary to include subscripts and the dependence, e.g.,
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Hlxi' Yi) means the particular function from the set {Hix, y)} associated
with nodej and evaluated at the point (Xi' Yi)' We hope there is no confusion.

We have now decided on our choice and position of nodes for the curved
element. We have (n/2)(n + 1) interior nodes and intend to interpolate
function value at these nodes. We have 2n + 1 nodes between vertices on
each curved side and will interpolate function value at these points. Finally
we have the vertex nodes and there we will interpolate function value and
partial derivatives up to and including order n. We will label the corre
sponding basis functions {WIi} for the interior nodes, {WCi} for the nodes
on the curves, and {WV",sY} for the vertex nodes. We will require that these
functions satisfy similar properties to the {Hi} and {T"sJ, though we now
require these properties to be satisfied at more nodes. For example, the
{WV"'/lY} must satify identical properties to the {T"'/lY} at vertices but must
be zero not just at the interior nodes but also at the nodes on curved sides.

We ultimately wish the basis to span polynomials up to degree 2n + 1.
This gives us the (2n + 3)(n + 1) conditions (written symbolically)

+I WCi = 1

=X

(4)

8"'-I-/l(y2n+l ) I
~ I WV + ~ y~n+IWJ. -L ~ V~n+lWC. = y 2n+1
1.... OX'" OYs v: "'/ly L.' , I L."' , .

Y

However, since the set {Hi' T"'/lY} spans these polynomials, we could
equivalently demand that our basis {WV",sY, WIi , WCi} span the basis
{Hi' T"sy}. This leads to the equivalent system

Wil + I H1(Xi ,Yi) WCi = H1(x, Y)

WI2 +I H 2(Xi , Yi) WCi = H 2(x, y)

WIN +I HN(Xi ,Yi) WCi = HN(x, y),

WVOOl + L TOOl(x, ,Yi) WCi = T001(x, y)

WV002 +I T002(Xi, Yi) WCi = T002(x, y)

where N = (n/2)(n + 1)

(5)



106 R. MCLEOD

where we have used the properties given in Eqs. (2) and (3). This can be
written in the form

. . .
HN(x, y) - WIN - L HN(Xi ,Yi) WCi
T001(x, y) - L T001(Xi , Yi) WCi

(6)

This system is inconsistent unless

j = 1,2,... , N, (7)

in which case the complete basis is given by {WIi , WCi , WV"'13"}' where

(8)

Hence if we have a suitable set of {WIi , WCi} which also satisfy Eq. (7),
then the basis can be completed by using Eq. (8). We will now produce such
a basis.

5. BASIS CONSTRUCTION

,For ease of understanding we will work through a simple case before
stating the more general results. Consider the case where we have an element
with two straight sides and one conic are, and we wish to construct a basis
for cubic polynomials on this element. This corresponds to the case where
n = 1 and I = 1 in Eq. (1); we will have a total of 13 basis functions, one
associated with an interior node, three associated with nonvertex nodes on
the conic side, and the remaining nine associated with the vertex nodes.
The situation is depicted in Fig. 1, where the straight sides are 12 and 13



lNTERPOLATlON OVER CURVED ELEMENTS 107

6

5

~_---1l---72

FIG. 1. Node positions for a basis for cubic polynomials on the element with two
straight sides and one conic arc. This corresponds to the case n = 1, 1= 1 in Eq. (1).

and the conic arc (in this case drawn as an ellipse) is 34562, and the interior
node has been labeled 7. We must produce a satisfactory WI7 , WC4 , WCs ,
WC6 , and then Eq. (8) will enable us to complete the basis.

Let (A; B) denote the linear form defined by the line AB, and let (A; B)i
denote this linear form normalized to have unit value at node i.

Similarly, let (A; B; C; D; E) denote the quadratic form defined by the
points A, B, C, D, E (note that in general five points uniquely determine a
conic), and let (A; B; C; D; E), denote this quadratic form normalized
to have unit value at node i.

Let the conic arc be given by f(x, y) = 0 and let it be the similarly
normalized quadratic form. Extend all element sides to give the set ofexternal
intersection points (in this case, only two points 8 and 9). With the notation
so defined we note that

(1; 3); = (1; 9); = (3; 9)), etc.

The external intersection points 8 and 9 uniquely determine a line, the linear
form of which, (8; 9), we denote by d.

Consider

By definition, WC4 = 1 at node 4. Also WC4 = 0 at nodes 1, 2, 3, 5 and 6, Le.,

By construction we are also assured that WC4 is identically zero on the
opposite sides 12 and 13. Thus conformity across these sides will be assured.
We must now show that WC4 reduces to a cubic along the conic arc so that we
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will ultimately be able to use Bezout's theorem to show conformity across
this side. We follow the same arguments as Wachspress [8] where, as a
special case of Max Noether's fundamental theorem, we have

(9; 3)(8; 2) = (8; 9)(3; 2) mod!

Therefore
(1; 3)(1; 2)!d = (2; 3) mod/,

and hence
WC4 - (2; 3)(3; 5; 6; 2; 7)mod/,

i.e., reduces to a cubic on! Also, by construction WC4 has double points
at 1, 2, 3 and hence oWC4!ox = oWC4!oy = 0 at these points.

WC4 hence has all the properties desired of it. In a similar fashion we
define WC5 and WC6 to give the set

Now let

WC4 = (1; 3)4(1; 2M3; 5; 6; 2; 7)4!d4

WC5 = (1; 3Ml; 2M3; 4; 6; 2; 7)5!ds ,

WC6 = (1; 3Ml; 2M3; 4; 5; 2; 7)6!d6.

(9)

(10)

By construction WI7 = 0 on the element sides and has double points at
1, 2, and 3. Now consider

6

F(x, y) - H7(x, y) - WI7(x, y) - L H7(Xi, Yi) WClx, y). (11)
i~4

This function is zero at 1, 2, 3, 4, 5, and 6, and has double points at 1, 2,
and 3. Therefore

F(x,Y) = 0,
or

F(x, y) = 0:(1; 3)(1; 2)f!d

for some scalar 0:. ButF(x7 , Y7) = °and since (1; 3), (1; 2), andfare nonzero
at node 7, F(x, y) must be identically zero. Thus WI7 , WC4 , WC5 , WC6

span H 7 , i.e., Eq. (7) is satisfied and hence we can use Eq. (8) to complete
the basis. This gives us a basis of 13 functions which together span all poly
nomials of degree less than or equal to 3.
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In general, we must produce a set of basis functions associated with nodes
on the conic sides and a set associated with interior nodes. Each of these
basis functions will be of the form

K(O(X, y) N(x, y)fD(x, y), where K is a normalizing constant, (12)

where we associate O(x, y) as the term required to ensure that the basis
function is identically zero on all element sides not containing the appropriate
node. N(x, y) will be the term which ensures that the basis function is also
zero at the remaining nodes, with the obvious exception of the one node
associated with the basis function. D(x, y) will be the term required to ensure
that the basis function reduces to the appropriate degree polynomial along
the side associated with the particular basis function. We will deal with each
of these terms in turn.

1. D(x, y)

Two algebraic curves of degrees m and n have mn intersections and hence
the total number of intersections of element sides in our case will be 3, 5, 8,
or 12 when we have no conic sides, 1,2, and 3 conic sides, respectively. (For
the moment we are assuming that all the intersections are simple.) Three of
these intersections are vertices, which leaves us with 0, 2, 5, or 9 external inter
section points. These external intersection points then uniquely determine
algebraic curves of orders 0, 1, 2, or 3. The term D(x, y) is taken to be the
polynomial associated with the algebraic curve defined by the external inter
section points of the curves defining the element. We note that this polynomial
is of degree K - 3, where K is the sum of the degrees of the polynomials
associated with the curves defining the element. We also note that this is the
same denominator polynomial discussed in more detail (and in the special
cases where the intersections are not simple) by Wachspress [8]. Indeed, it
was Wachspress who first applied the ideas of algebraic curve intersection
theory to the production of basis functions for curved elements.

2. O(x, y)

This term is simply the product of the polynomials associated with element
sides which do not include the node being considered. Hence, for all the
basis functions {WI}, the corresponding O(x, y) will be the product of the
three polynomials associated with the element sides. This is because the WI
basis functions are the functions corresponding to interior nodes and the
interior nodes do not lie on any of the element sides. For the {We} functions
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the O(x, y) will be the product of the polynomials associated with the two
opposite sides.

3. N(x, y)

For this term we will consider the {WI} functions and the {We} functions
separately. For degree 2n + 1 approximation we have (nj2)(n + 1) interior
nodes. Now for the {WI} functions the O(x, y) terms ensure that the basis
function is identically zero along the element sides and hence at all vertex and
side nodes. However, we must also ensure that each of these basis functions
is zero at the remaining (nj2)(n + 1) - I interior nodes. We must also ensure
that each WI has a zero of multiplicity at least n + 1 at each of the vertices.
For n = 1 this is assured, since the term O(x, y) has a zero of multiplicity
two at each vertex. However, for n = 2 and higher this is not the case and
extra zeros at vertices must be included in the corresponding N(x, y) term.
Now for n ~ 2, the N(x, y) term for each node must have (nj2)(n + 1) - I
simple zeros at the remaining interior nodes and zeros of multiplicity n - I
at each of the vertices. A zero of multiplicity n - 1 imposes (nj2)(n - 1)
linear conditions on the coefficients of a polynomial. Hence we have a total of

3 X (nj2)(n - 1) + (nj2)(n + 1) - I

linear conditions on the coefficients of N(x, y), i.e.,

2n2 - n - 1.

This is the exact number required to uniquely determine a curve of degree
2n - 2. We will then define, for each interior node, N(x, y) to be the poly
nomial which has simple zeros at the remaining (nj2)(n + 1) - 1 interior
nodes and zeros of multiplicity n - 1 at each vertex. We point out here that
the lines joining each pair of vertices will have 2n - 2 intersections with each
of the functions N(x, y). This does not contradict Bezout's theorem. However,
if any of the interior nodes lie on the line joining any two vertices, then
Bezout's theorem would imply that N(x, y) was reducible, having t1;1is line
as a factor. In this case the remaining n2 - 2 conditions are insufficient to
uniquely determine the remaining factor of degree 2n - 3. That is, for
uniqueness we must ensure that the node selection is such that no subset of
m(2n - 2) + I points, counting multiplicity, lies on a curve of degree m,
m ~ 2n - 2.

For the basis functions associated with nodes of the conic sides the argu
ment is similar. Here the O(x, y) term ensures us that the basis function will
be identically zero on opposite sides and hence at all the nodes on that side.
We are also assured of a double zero at the opposite vertex and simple zeros
at the adjacent vertices. The term N(x, y) in this case must be zero at the
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remaining 2n nodes on the conic side and at the (11/2)(11 ~ 1) interior nodes.
It must also have a zero of multiplicity n - 1 at the opposite vertex and zeros
of multiplicity n at each of the adjacent vertices. This gives a total of 2n2 + 3n
linear conditions on N(x, y). This is exactly the number required to uniquely
determine a curve of degree 2n. In this case then we define N(x, y) to be the
polynomial associated with the unique curve of degree 2n having simple
zeros at the remaining 2n nodes on the conic and the (n/2)(n + 1) interior
nodes, a zero of multiplicity n - 1 at the opposite vertex, and zeros of multi
plicity n at each of the adjacent vertices. We note here that the conic and the
curve given by N(x, y) = °have 4n intersections and again there is no
contradiction of Bezout's theorem.

7. CONSISTENCY

By construction, the sets {WI} and {WC} have unit value at the corre
sponding node and are zero at all other nodes. They also have zero partial
derivatives up to order n at each vertex. Also, by construction, they are
identically zero on all element sides not containing the corresponding node.
We are therefore assured of interelement continuity, i.e., conformity. It only
remains to show that these sets satisfy Eq. (7).

For any basis function WC, the O(x, y) term is the product of the two
opposite sides and hence is quadratic, cubic, or quartic. Similarly the D(x, y)
term is linear, quadratic, or cubic. Looking at each of these cases in turn we
have:

1. One Conic Side (Fig. 2a)

O(x, y)jD(x l y) = K(1; 3)(2; 3)(4; 5) = K(l; 5)(2; 4)(4; 5).

Now the conics (1; 5)(2; 4), (4; 5)(1; 2), and f(x, y) have a common inter
section cycle in pairs, namely the points 1, 2, 4, and 5. Therefore

(1; 5)(2; 4) = (4; 5)(1; 2) modf(x, y);
therefore

(1; 5)(2; 4)/(4; 5) (1; 2) modf(x, y),
i.e.,

O(x, y)/D(x, y) (1; 2) modf(x, y).

2. Two Conic Sides (Fig. 2b)

D(x, y) is the polynomial associated with the conic defined by points
4, 5, 6, 7, and 8. For nodes on the conic f(x, y) = 0, O(x, y) = g(x, y)(2; 7).
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f(",y) ~ 0

C
FIG. 2. The completed figures showing the external intersection points for the elements

with one conic arc (Fig. 2a), two conic arcs (Fig. 2b), and three conic arcs (Fig. 2c). In
each case the element vertices are labeled 1,2, and 3.



INTERPOLATION OVER CURVED ELEMENTS 113

Now, g(x, y), (8; 1)(4; 5), and f(x, y) have a common intersection cycle
in pairs and hence,

g(x, y) - (8; 1)(4; 5) modf(x, y).

Similarly,
D(x, y) - (7; 8)(4; 5) modf(x, y);

therefore

O(x, y)jD(x, y) (8; 1)(2; 7)j(7; 8) modf(x, y).

But
(8; 1)(2; 7) - (7; 8)(1; 2) mod/ex, y);

therefore

O(x, y)jD(x, y) (1; 2) modf(x, y).

Similarly, for basis functions associated with nodes on g(x, y) = 0, we would
have the corresponding

O(x, y)jD(x, y) (1; 3) mod g(x, y).

3. Three Conic Sides (Fig. 2c)

Now D(x, y) is the polynomial associated with the cubic curve through
the nine points 4, ... , 12.

O(x, y) = g(x, y) h(x, y).

Now
g(x, y) - (1; 10)(7; 4) modf(x, y),

h(x, y) = (2; 11)(5; 8) modf(x, y),

D(x, y) - (7; 4)(5; 8)(10; 11) modf(x, y);
therefore

But

Therefore

O(x, y)jD(x, y) - (1; 10)(2; 11)j(10; 11) modf(x, y).

(1; 10)(2; 11) (10; 11)(1; 2)modf(x,y);

O(x, y)jD(x, y) = (1; 2) modf(x, y).

Similarly, for basis functions WC associated with nodes on g(x, y) = 0,
we would have

O(x,y)jD(x,y) - (1; 3)modg(x,y),
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and for the ones associated with nodes on hex, y) = 0 we would have

O(x, y)(D(x, y) (2; 3) mod hex, y).

Thus in each case

O(x, y)(D(x, y) - Oinear) mod(conic side). (13)

Now for the basis functions associated with nodes on a conic side we saw
that the term N(x, y) was a polynomial of degree 2n. Hence we arrive at the
important result for a node on a conic side f(x, y) = 0,

WC = P2n+l(x, y) modf(x, y), (14)

where P2n+l(x, y) is a polynomial of degree 2n + 1.
Now returning to Eq. (7), we will use. subscripts on the basis functions

{WC}, {WI}, and {H} to denote the corresponding node, and subscripts
on polynomials to denote the degree of the polynomial

m(2n+1)
WIj + l: H,{Xi' Yi) WCi - HJCx, y) = PM(x, y)/Dm(x, y), (15)

i~l

where M = 2n + 1 + m, j = 1,2,... , (n/2)(n + 1), and D(x, y) has been
wirtten Dm(x, y) and is of degree m (m = 0, 1,2 or 3). On each ofthe element
sides WI} = 0 (j = 1,2,... , (n/2)(n + 1)) and we have shown that on element
sides

(i = 1,2,... , m(2n + 1)).
Hence

PM(x, y)(Dm(x, y) = Q2n+l(X, y) mod(each element side). (16)

On straight sides this is identically zero since the sets {WI}, {WC}, and {H}
have the linear forms of the straight sides as factors. On conic sides this
polynomial has simple zeros at 2n + 1 points of the conic and zeros of multi
plicity n + 1 at the two vertices concerned. This means that the polynomial
is either identically zero or the corresponding algebraic curve of degree
2n + 1 and the conic have 2n + 1 + 2(n + 1), i.e., 4n + 3, points in
common. From Bezout's theorem we see that if they have more than
2(2n + 1) then they must have a common component. Since the conic is
assumed irreducible, then the polynomial Q2n+1(X, y) must have a factor which
is the quadratic form of the conic. This is true for all element sides and hence ~

or (17)
= Sm+3(X, y) Q2n':"2(X, y)(Dm(x, y),

where Sm+3(X, y) is the product ofthe polynomials associated with the element
sides.
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Now, for each interior node j, the corresponding term Nex, y) was shown
to be a polynomial of degree 2n - 2, which is zero at the remaining
(nj2)(n + 1) - 1 interior nodes and at the vertices. We now write N(x, y)
as N2n- 2(X, y) to denote degree. Each of the WCi is zero at all these points
and likewise the H j functions. Furthermore, all these functions have zeros
of multiplicity n + 1 at the vertices. Hence PM(x, y)jDm(x, y) has simple
zeros at (nj2)(n + 1) - 1 points on the curve N 2n- 2(X, y) = 0, and zeros
of multiplicity n + 1 at a further three points of N 2n- 2(X, y) = 0. Hence,
if PM(x, y) is not identically zero, then from Eq. (17), since Sm+3(X, y) has no
zeros in the interior and exactly double zeros at the vertices, Q2n-2(X, y)
must have simple zeros at (nj2)(n + 1) - 1 interior points and zeros of
multiplicity n - I at the vertices. But this was exactly the definition of
N2n- 2(X, y). Therefore

or (18)

for some constant K.
The proof is completed by noticing that PM(x, y) is also zero at node j

for each j = 1, 2, ... , (nj2)(n + 1) and this node, by construction, neither lies
on the element sides nor on the corresponding N 2n - 2(X, y) = O. Therefore

l.e.,
m(2n+l)

WIj + L: Hj(Xi ,y,) WCi - H;Cx, y) = O.
i~1

(19)

Equation (7) is satisfied, the linear system (6) is consistent, and the
complete basis is given by Eq. (8).

8. EXAMPLE

As another example we will show how to construct a basis for up to fifth
degree polynomials over an element which has two conic sides and one
straight side. For such a degree basis we will be interpolating function value,
and first and second partial derivatives at the vertices. We will have three
interior nodes and five nodes on each conic side. Such an element is depicted
in Fig. 3, where the element vertices are VI' v2 , and V3 • Let the conic side
between VI and V2 be given by f(x, y) = 0, that between VI and V3 by
g(x, y) = 0, and the straight side between V 2 and V3 by {(x, y) = O. We then
construct the following polynomials.

Let PEi(x, y) be the polynomial associated with the algebraic curve defined
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e,
x

x e,

d2 ~----;t-"-----------;;--Jr---------fv,

FIG. 3. Node positions for a basis for quintic polynomials on the element with one
straight side and two conic sides. This corresponds to the case n = 2, I = 2 in Eq. (1).
The nodes!l ""'/5 are on the conicf(x, y) = 0, and the nodesgl ,..., g5 are on g(x, y) = O.

by the points {Vj} and {ej},j =1= i, which is normalized to have unit value at ei •
Each of these will be quadratic polynomials.

Let PFlx, y) be the similarly normalized polynomials associated with the
algebraic curve which has simple points at {!J} (j =1= i), {ej}, and V3 , and double
points at Vi and V2 • Each of these polynomials will be a quartic.

Similarly, let PG,(x, y) be the normalized polynomials associated with the
algebraic curves, which have simple points {gj} (j =1= i), {ej}, and V2, and
double points at VI and V3 • These too will be quartics. Let D(x, y) be the
quadratic polynomial associated with the curve through the points {dJ}.

There will be ten basis functions associated with nodes on the conic sides,
five on each side. We label these WCFi for the nodes on f(x, y) = 0 and
WCGi for the nodes on g(x, y) = O. These will be

WCFi = (Xi g(x, y) t(x, y) PFi(x, y)/D(x, y)

WCGi = fJd(x, y) t(x, y) PGi(x, y)/D(x, y)

(i = 1, 2, , 5), (20)

(i = 1,2, , 5). (21)

The three basis functions associated with interior nodes will be

WIi = yd(x, y) g(x, y) t(x, y) PE,(x, y)/D(x, y) (i = 1,2,3). (22)

The (Xi, fJi' and Yi are normalizing constants. The remaining 18 basis func
tions are then obtained from Eq. (8).
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Though in many problems it is convenient to consider many small elements
and polygonal approximations to curves in the domain, there are problems
where it is a distinct advantage to be able to use large elements. This benefit,
however, may not be realized if using the large elements incurs a loss of
accuracy in approximating the curves a reduction in the order of the bases
or errors due to nonconformity. The method of producing bases given here
overcomes all these problems and should be suitable for use in problems
where large curved elements are desired.
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